情感是影响学习者认知和行为的关键性非
智力因素。准确分析、识别学习者的情感状态,对
教育的个性化、智能化
发展尤为重要,它是情感计算的重要内容,已经成为
人工智能和教育领域的交叉研究热点。学习体验文本是学习者情感分析的主要
数据来源。面向学习体验文本,是在完善基础词典和情感词典的基础上,提出一种融合情感词典和机器学习的学习者情感分析模型,能够实现对段落级/篇章级学习体验文本的多级情感分类,从而挖掘学习者内隐的情绪状态。为了检验模型的有效性,采用宏平均指标全面评估情感分析模型的整体分类性能。研究结果表明:选择情感词特征和句子构成特征、采用SVM分类器时,该模型能够准确识别学习体验文本中的学习者情感;模型不仅为学习者多级情感分析提供新的研究思路,而且也为深入挖掘学习行为、改善在线教育的学情分析等,提供了技术支撑。这一研究结果,有助于进一步把握模型的应用前景、面临的问题和挑战等,并提出了相关建议。