物联网设备在现代社会中日益普及,但其
安全性问题仍是一个重要挑战。针对现有
数据特征利用不充分的问题,提出一种基于信息熵和注意力机制的双向LSTM多分类模型方法,用于检测物联网入侵检测中的异常行为。首先,在CICIoT2023数据集中分离特征列,并通过计算信息熵特征增强数据表示。然后,利用基于注意力机制的双向LSTM方法进行特征提取,使用Softmax方法进行分类。通过对比实验,证明该方法各项指标都优于对比模型。此外,采用ROC曲线和混淆矩阵评估模型性能,最终模型的AUC为0.99,准确率为0.965。