您的当前位置:首页 >> 期刊文献 >> 正文
基于极限学习机与负荷密度指标法的空间负荷预测
摘 要:
空间负荷预测对有配电网的规划建设具有重要意义,为了提高配电网空间负荷预测的精度,文中提出基于极限学习机(ELM)的配电网空间负荷预测算法,采用粒子群优化(PSO)模型的参数。首先根据用地性质将负荷分类,再通过模糊C均值(FCM)算法对每一类负荷进行聚类分析,建立精细化的负荷密度指标体系。根据待预测地块的特性指标选取训练样本,代入ELM训练,提高预测精度。通过搜索的数据对实例进行仿真试验,通过对比未引入FCM算法的相对误差、未引入PSO算法的相对误差以及采用PSO-ELM算法的相对误差可得,文中提出的PSO-ELM算法具有较高精度,满足实际工程的要求。
作 者:
  • 邵宇鹰;彭鹏;张秋桥;王冰
单 位:
    国网上海市电力公司;南京宽塔信息技术有限公司;河海大学能源与电气学院
关键字:
  • 空间负荷预测对有配电网的规划建设具有重要意义,为了提高配电网空间负荷预测的精度,文中提出基于极限学习机(ELM)的配电网空间负荷预测算法,采用粒子群优化(PSO)模型的参数。首先根据用地性质将负荷分
页 码:
    86-91
出 处:
HTML阅读PDF文献下载您还没有登陆会员账号,请先登陆,在进行阅读或下载!
返回顶部 关注公众号