您的当前位置:首页 >> 期刊文献 >> 正文
基于前缀树的业务流程增强预测方法
摘 要:
预测性业务流程监控主要利用已经发生的流程执行的数据,目前的主流方法是通过建立深度学习模型预测在线流程的执行情况。现有的流程预测深度学习方法主要利用历史事件日志数据来学习模型进行预测,较少考虑日志间的行为关系,本文通过挖掘流程执行期间日志之间的行为关系,以帮助提高预测模型的质量。将挖掘出的日志间的行为关系使用前缀树进行表示,并使用现有的基于深度学习的业务流程预测模型,在结果预测阶段通过前缀树结构筛选符合行为关系的预测结果提供决策支持,以此提高预测结果的精确度,并在事件日志中与基线方法进行比对,在预测下一个活动以及预测后缀方面,预测精度均有所提高。
作 者:
  • 孙大志
单 位:
    安徽理工大学数学与大数据学院
关键字:
  • 业务流程监控;深度学习;信息挖掘;前缀树;决策支持;
页 码:
    44-49
出 处:
HTML阅读PDF文献下载您还没有登陆会员账号,请先登陆,在进行阅读或下载!
返回顶部 关注公众号